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Abstract. We examine the effect of the different spatial widths of successive subbands on the 
calculation of the single-particle relaxation and scattering times when up to two subbands 
are occupied. It is shown that, firstly, the single-particle relaxation time for the second 
subband is always larger (by a factor of two or more) than that for the ground subband and, 
secondly, the scattering time for the second subband is sometimes larger and sometimes 
smaller than that for the ground subband (depending on the electron concentration in the 
second subband) in qualitative agreement with recent experimental data. 

1. Introduction 

When an electron in a momentum eigenstate is subjected to scattering mechanisms there 
are two time constants that are significant. The first is the single-particle relaxation time 
which is ameasure of the lifetime of the state as aresult of all possible transitions. It can be 
determined experimentally from the amplitude of the Shubnikov-de Haas oscillations 
(Fang etaZl988). The second time constant is the scattering time (or the transport time) 
which determines how fast the momentum is dissipated by those transitions that are 
effective in changing momentum. It can be obtained experimentally from the mobility 
y through the relation 

y = et,/m* (1) 
where e and m* are the magnitude of the electron charge and effective mass respectively. 

There has been a great deal of discussion recently about the relationship between 
the scattering times Z, and the single-particle relaxation times t, when two subbands are 
occupied in a modulation doped GaAs/GaAlAs heterojunction. Such occupation may 
occur at high temperatures or high concentrations of carriers. It leads to two important 
effects. Firstly the transport involves an intersubband scattering mechanism which 
decreases z, and z, for the first subband when the second begins to be occupied. Secondly 
the screening of the scattering potentials includes contributions from all the occupied 
subbands (Stern 1978). 

Experimental data (Fang et aZ1988, Van Houten et a1 1988, Smith et aZ1988, Smith 
and Fang 1988) indicated that z, for the second subband (tSZ) is always larger than that 
for the first subband ( zsl) and that the scattering time for the first subband ztl is sometimes 
larger and sometimes smaller than the corresponding quantity for the second subband 
zt2. This is in contradiction to previous theoretical calculations (Mori and Ando 1980) 
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and experimental results (Stormer et aZ1982, Englert et aZ1983) which indicate that tt2 
is always smaller than rtl. The observed difference of behaviour between the two times 
raises a number of problems. A possible answer to these problems lies in the larger 
spatial width of the second subband which in some cases is up to three times that of the 
first subband (Ando 1982). The increased width increases the second-subband scattering 
times considerably when the spacer layer is much smaller than the width of the first 
subband. 

In this paper we calculate the effect on t, and t, of the occupation of the second 
subband using the multisubband transport theory of Siggia and Kwok (1970) and taking 
into account the difference of the spatial widths of the subband wavefunction. 

2. Poisson’s equation 

Following the approach of Stern and Howard (1967) we use the two-dimensionally 
Fourier transformed Poisson equation for an ionised impurity of charge e at z = zo where 
the Cartesian coordinate z is measured perpendicular to the plane of the ~ D E G .  We write 
x and y for the Cartesian coordinates in the plane of the ~ D E G  and we assume that the 
permittivity is independent of x and y .  Thus we obtain 

where E ( Z )  is the permittivity at the position z. In equation (2) A(q ,  z )  and Pind are the 
two-dimensional Fourier transforms of the potential and the induced charge density. In 
a linear screening approximation and neglecting intersubband coupling (Stern 1978) we 
have 

P i n d ( q ,  z> = - Pi(q)gi(z)Ai(q) (3) 
i 

where i labels the subbands and Pi(q) and gi(z) are the dielectric function and the 
normalised charge density for this subband respectively. Finally 

Ai(q)  = jm A(q ,  z>gi(z> dz.  
-X  

By solving equation (2) and using equations (3) and (4) we obtain for Ai 

A i ( q )  = -2Ze jx  G ( z , z f ) g i ( z )  d z  
- X  

(4) 

where G ( z ,  z f )  is the Green function for equation (2). Assuming now that we have the 
same dielectric constant everywhere in our material so that E(Z) = E ,  a constant, the 
Green function G(z ,  z f )  is (Morse and Feshbach 1953) 

G ( z ,  z ’ )  = ( -1/2~q)  e-qlz-zol. (6) 
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3. General theory of the relaxation time and the scattering time 

In the case of a ~ D E G  with two subbands occupied we approximate the subband 
wavefunctions from the following sinusoidal formulas: 

Y, = cos(nm/a,)  O s z s a ,  (7) 

Y, = o  2 6 0  z 2 a, (8) 

and 

where n = 1 and 2 indicates the subband and a, is the spatial width of the wavefunction 
for the nth subband which depends on n (Stern and Das Sarma 1984, Walukiewicz et af 
1984, Ando 1976, Yokoyama and Hess 1986, Ando 1982). Mori and Ando (1980) use a 
self-consistent variational wavefunction in which the two widths are the same. Our 
elementary wavefunctions are not self-consistent but they are good enough to show the 
essential significance of the different spatial widths of the two subband wavefunctions 
for the phenomena under discussion. 

When the system of coupled equations ( 5 )  is solved we find for Ai (Stern 1978) 

Gi + (GjGjj - GjGy) 
1 + PjGjj + PiGji + P;Pj(GjjGjj - GyGji) 

A i  = 2Ze 

where i # j ,  i, j = 1 , 2  and 

Gi = Iowi G(z, z’)gi(z) d z  

and 

G, = Ioe’ loa’ G(z, z ’ )g i (z)g j (z ’ )  dx dz’.  

(9) 

We use here (Ando et aZl982, Stern 1967) the RPA dielectric function. For the second 
subband, RPA yields the same results as the Thomas-Fermi approximation only when 
the density of electrons in subband 2, ns2, is comparable with that in the first subband, 
Itsl. On the other hand, when ns2 is much smaller than nsl the Fermi wavenumber in 
subband 2 becomes very small and the associated screening wavenumber is greatly 
reduced below the Thomas-Fermi value. 

The intersubband matrix element is 

When subband 2 is unoccupied the inverse of the single-particle relaxation time in 
subband 1 is obtained by integrating P, (k ,  k ’ )  over all k’:  

ts<’ = P l ( k ,  k’)  dk’. (13) J 
Here P l ( k ,  k ’ )  is the scattering rate from a state k = (kx ,  k,) to a state k ’ .  This transition 
rate is given by Fermi’s Golden Rule (Schiff 1967) 

Pl(k, k ’ )  = (2Jc/WklV(x, Y)Jk’) l*~(W’) - W )  (14) 

where V(x, y )  is the scattering potential integrated over all z with a weighting factorgl = 
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Y 1Y2. We can see immediately that the matrix elements are the Ai we give in equation 
(9). It follows that (Stern and Howard 1967) 

where 8 is the scattering angle, A = m*e22n/h3 and n(z’)  is the density of the impurities 
at a plane z’ from the interface and z‘ is integrated from the spacer layer thickness z o  = 
1.5 nm to infinity. In our case n(z’) is a constant with value 10l8 atoms cm3. 

When the second subband is occupied another channel is opened to the electrons in 
subband 1 and tSl becomes 

zsi -’ - - A C x  C2” (lAiI2 + \Ai12)n(z‘) d e d z ’  
J z o  J o  

where i is the subband index and ij = 1,2 ,  i # j and n(z’) is the density of the impurities 
at a plane z f  from the interface and zo is again 1.5 nm. 

Calculations of the scattering times are much more difficult. Stern (1978) calculates 
them on the assumption that intersubband scattering may be neglected. Consequently 
he does not find a decrease in the mobility in the first subband when the second subband 
begins to be occupied. The calculation has been improved by Mori and Ando (1980) 
who take account of intersubband scattering which is also included in our calculations. 

Siggia and Kwok (1970) give the details for many subbands. Applying their general 
equation (88) for two populated subbands and solving the resulting equations we have 

z,i = (Pi + P i j ) / ( P i P j  - P,Pji) (17) 

where i f j ,  

P .  = ~ ~ ~ ~ l ( k ’ ~ v ( x , y ) l k ) ~ 2 ( 1  -cos O ) G ( E i ( k ) - E i ( k ’ ) ) n ( z f )  dk’dz’  
20 

‘ h  

+ lX I I(k’IV(x, y)lk)12G(Ej(k’) - Ei(k ) )n ( z ’ )  dz‘  dk’ (18) 
i+i z o  

and 

In these equations Vii is the scattering potential averaged over all z with a weighting 
factor gij(z)  = Yi(z)Yj(z). 

4. Comparison with experiment 

An interpretation of the early data on two-subband transport leads to the conclusion 
that the mobility of the electrons in the ground subband is larger than that for those in 
the first excited subband (Stern and Howard 1967). This is in agreement with the 
theoretical results of Mori and Ando. The main reason for this is that the Fermi 
wavevector in the first excited subband is much smaller than that of the ground subband. 



Relaxation and scattering times in a 2DEG 

100 300 
d 

3951 

5.J 

I 
I 

I 
I 

/ 
I 

I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I 

I 
I 
I 

I 
I 

I 
I ; /  

0 12 
k,a, x ~ O - ~  

Figure 1. Plots of the ratio tS2/t , ,  against the dif- 
ference between the subband widths in units of 
the Bohr radius = 0.0133 (full curve) and 
0.0123 (broken curve). 

Figure 2. Plots of t,, (full curve) and tS2 (broken 
curve)againstk,u,,whend = 450andq = 1.5 nm. 

However, recent experimental work shows a different behaviour. Fang et a1 (1988) 
measure ttl, tt2, zS1 and ts2 for a GaAs/GaAlAs heterojunction with a spacer layer 
thickness of 1.5 nm and find that tS2 = 3.0 tsl and the overall mobility increases by a 
factor of 1.5 after the occupation of the second subband. This suggests that p2 > p1 and 
tt2 > ttl (Fang et a1 1988). Smith and Fang (1988) find p2  > pl and zS2 = 2.2 zS1. On the 
other hand Van Houten et a1 (1988) and Smith et a1 (1988) find zt2 < ztl. Thus the 
experimental data indicate that tS2 is always larger than tsl but rt2 is sometimes larger 
and sometimes smaller than ttl. 

At first sight these results are very perplexing because they indicate that there is no 
well defined relationship between z, and z, as has been supposed (Das Sarma and Stern 
1985). We show below that the explanation lies in the variation of the spatial width of 
the subband wavefunctions which has been ignored by Mori and Ando (1980) because 
they were investigating a superlattice rather than a heterojunction. 

In figure 1 we plot the ratio tS2/zs1 at 0 K for k+o = 0.0133 (full curve) and 0.0123 
(broken curve) against the normalised difference in the spatial subband widths a = 
(a2 - al)/ao for a spacer layer thickness zo = 1.5 nm and a first subband width al = 
23 nm. Here a. denotes the Bohr radius in free space. The values of zo and al describe 
the samples used by Fang et a1 (1988). In particular, a1 is the square well width cor- 
responding to the subband occupancies which they quote. The values of kF chosen 
illustrate what happens when the second subband begins to be occupied and when 
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Figure 3. Plots of the ratio ttZ/tt, against d for 
k+,, = 0.0133 (full curve) and 0.0123 (broken 
curve) when a1 = 23 nm and zo = 1.5 nm. 

Figure 4. Plots of tt2/rt, against zo/ao when a1 = 
23 nm and k+" = 0.0125. 

significant occupancy has taken place (see figure 3). We see that, when d is small ts2/ 
tsl < 1. Then it increases rapidly to become greater than one for larger values of d.  Thus, 
when kFao is in the region of 0.013, the values of ts2/tsl observed experimentally are 
consistent with the values of d = 450 which is in the order of the value it has in the 
experimental sample. 

In figure 2 we plot the single-particle relaxation times tsl and ts2 versus kf lo  and d = 
450. We see that tS2 (broken curve) rapidly becomes larger than tSl (full curve). We also 
see a small decrease in tsl immediately after the population of the second subband due 
to the (relatively small) intersubband scattering. After that tsl increases faster than 
before. Smith et a1 measure tsl when the occupation of the second subband is fairly large. 
The electron concentration of the first subband nsl is only nine times larger than that of 
the second subband ns2. They find that tsl is 1.7 times the value observed before the 
second subband is occupied. This is consistent with the behaviour of tsl exhibited in 
figure 2. 

In figure 3 we plot the ratio ttZ/ttl against d for the same parameter values as in figure 
1. The behaviour of the scattering time ratio is different from that of the ratio of the 
single-particle relaxation times. We see that for small kF the ratio is smaller than one 
even for large d .  This means that there is a range of kF where tt2 is always smaller than 
rtl. For larger values of kF we observe a similar behaviour to that shown in figure 1. This 
is in qualitative agreement with the experimental data (Van Houten et a1 1988, Fang et 
a1 1988). 

In figure 4 we plot the ratio tt2/ttl against the spacer layer thickness zo for at = 23 nm 
and kFao = 0.0125. We see that, for small to, ttZ/rtl is larger than one. It decreases to a 
minimum value of 0.30 when zoao = 300 and then it increases again. 
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There are three significant factors that determine tt2/ttl. Firstly, there is the ratio of 
ns2/nsl which is always less than one: if we only take account of screening by the electrons 
in each subband (and ignore those in the other subbands) then tt2/ttl will be less than 
one when ns2/nsl is < 1. The second factor is due to the difference of the mean distances 
between the impurities and the electrons in the subbands. When the impurities are near 
the interface this difference is many times bigger than the spacer layer thickness and is 
the dominant factor forcing the ratio zt2/zt1 to values greater than one. When the 
impurities are well away from the interface the ratio of the mean distances of the 
impurities and the electrons in the second and first subbands tends to one and this factor 
begins to be less important. Then the main factor is the ratio ns2/nsl and zt2/tt1 falls off 
with ns2/ns1 as shown in figure 3. The third factor is the fact that the mean position of the 
electrons in the first subband lies between that for the second subband and the impurities. 
Consequently, the first-subband electrons screen the impurities very efficiently from the 
electrons in the second subband. When the impurities are remote from the electrons this 
additional screening becomes the dominant factor and leads to an increase in the ratio 

In figure 5 we plot ttl and tt2 against k$o for the same parameter values as in figure 
2. We find a large discontinuity in ttl and an increase in ttl after the population of the 
second subband with an initial rate similar to that before occupancy. This behaviour is 
completely different from that exhibited by tsl in figure 2. The main reason is the factor 
(1 - cos 6) in the integrand in equation (18). After the population of the second subband 
when ns2 << nsl, equation (17) becomes 

of t t * / t t1 .  

t t i  = l/Pi (20) 
because of approximate cancellation of all the other terms. This equation is similar to 
(15) except for the factor (1 - cos 6)  in the integrand. We see that there is a narrow 
range of kF in which tt2 is smaller than ttl. This range is very sensitive to d and zo (see 
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figures 3 and 4). In their work, Fang et a1 have assumed the occupancy of the second 
subband and found that tt2 > ttl as we would expect (Fang et a1 1988). It would appear 
that Van Houten et al are working with much smaller values of ns2, so that ttl < t t l  (Van 
Houten et aZ1988). 

5. Conclusion 

Our calculations are in qualitative agreement with experimental data. The scattering 
time of the second subband tt2 is sometimes smaller and sometimes larger than ttl 
(depending on the spacer layer thickness and the difference between the subbands 
widths). We find ts2 = 2 tsl in comparison with the experimental results tS2 = 3 tsl (Fang 
et a1 1988) and ts2 = 2.2 tSl (Smith and Fang 1988). 

The reason for these peculiar relationships between t, and t, is the rapid broadening 
of the spatial width of the subband wavefunction with increasing energy. We have used 
sinusoidal wavefunctions to bring out the essential physics of the problem in a simple 
way. For a more qualitative study of the problem it would be necessary to calculate more 
accurately the subband structure for each particular heterojunction and use variational 
wavefunctions instead of sinusoidal ones (Mori and Ando 1980). 
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